

Xuweiyi Chen

xuweic@email.virginia.edu | (206)532-9635 | xuweiyichen.github.io

EDUCATIONAL BACKGROUND

UNIVERSITY OF VIRGINIA <i>Ph.D. in Computer Science and Engineering</i> <u>Overall GPA:</u> 4.0/4.0 <u>Concentration:</u> 3D Computer Vision and Robot Learning	Charlottesville, VA <i>Aug. 2024 – May 2029 (Expected)</i>
UNIVERSITY OF MICHIGAN <i>M.S. in Computer Science and Engineering</i>	Ann Arbor, MI <i>Aug. 2022 – May 2024</i>
UNIVERSITY OF WASHINGTON <i>B.S. in Applied and Computational Mathematical Sciences, CUM LAUDE</i> <u>Honors:</u> \$6000 CoMotion Mary Gates Innovation Scholarship \$3000 Usha and S. Rao Varanassi SAFS Scholarship	Seattle, WA <i>Sep. 2018 – June 2022</i>

SELECTED INTERNSHIPS

Lambda <i>Machine Learning Research Intern.</i>	San Franscisco <i>Jan. 2025 – May. 2025</i>
● Experience Large-scale Pretrained Multi-modal Models using 24 B200 GPUs ● Designed novel architectures for multi-modal unifying 2D, 3D and 4D all using one single latent vector. ● Led the integration of computer vision with other modalities by developing unified multimodal representations that enable joint reasoning across language, vision, and audio.	

SELECTED FIRST-AUTHOR PUBLICATIONS

Semantic-Free Procedural 3D Shapes Are Surprisingly Good Teachers <i>UVA CV LAB supervised Prof. Zezhou Cheng</i>	3DV 2026 <i>Nov. 2024</i>
● Procedurally generated shapes offer a scalable, copyright-free, and geometrically diverse alternative to labor-intensive human-designed 3D datasets like ShapeNet. ● We use procedurally generated 3D shapes to achieve strong results in object classification, part segmentation, and few-shot learning. ● Point-MAE-Zero can perform masked point cloud completion without fine-tuning.	
Probing the Mid-level Vision Capabilities of Self-Supervised Learning <i>UVA CV LAB supervised Prof. Zezhou Cheng</i>	CVPR 2025 <i>Nov. 2024</i>
● Developed a benchmark suite to systematically evaluate mid-level vision capabilities in SSL models across 8 tasks. ● Conducted a large-scale study assessing 22 SSL models, revealing weak correlations between mid-level and high-level vision performance. ● Identified key factors influencing mid-level vision performance, including pretraining objectives and network architectures, providing insights for future SSL research.	
3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination <i>SLED lab in the University of Michigan supervised Prof. Joyce Chai & Prof. David Fouhey</i>	CVPR 2025 <i>Aug. 2024</i>
● Introduced 3D-GRAND, a large-scale dataset with 40,087 household scenes and 6.2 million densely grounded scene-language instructions to improve 3D-Language models (3D-LLMs). ● Proposed 3D-POPE, a benchmark to evaluate hallucinations in 3D-LLMs, enabling fair comparisons across models. ● Demonstrated that instruction tuning with 3D-GRAND significantly enhances grounding capabilities, emphasizing the importance of large-scale 3D-text datasets for advancing embodied AI research.	
Multi-Object Hallucination in Vision-Language Models <i>SLED lab in the University of Michigan supervised Prof. Joyce Chai & Prof. David Fouhey</i>	NeurIPS 2024 <i>July 2024</i>
● Investigated multi-object hallucination in Large Vision Language Models (LVLMs) using Recognition-based Object Probing Evaluation (ROPE), focusing on the distribution of object classes within a single image and visual referring prompts. ● Found that LVLMs exhibit more hallucinations when tasked with recognizing multiple objects compared to a single object, influenced by object class distribution and model behaviors. ● Identified key factors such as salience, frequency, and model intrinsic behaviors that contribute to hallucination, aiming to improve LVLMs' recognition and reasoning capabilities in complex visual scenes.	
LLM-Grounder: Open-Vocabulary 3D Visual Grounding with Large Language Model as an Agent. <i>SLED lab in the University of Michigan supervised Prof. Joyce Chai</i>	ICRA 2024 <i>Aug. 2023</i>
● Present the first method capable of localizing novel objects in 3D scenes using Neural Radiance Field (NeRF) and Large Language Models (LLMs) through iterative, natural language-based interactions. ● Enables a more human-like interaction with 3D objects in a learned 3D scene representation. ● Evaluated and shown that dynamic grounding outperforms static grounding in terms of accuracy, 3DIoU, and human ratings.	